Random Vector Norms

Jackson Hurley Advisor: Professor Garcia Pomona College

April 14, 2023

T

 \mathbf{T}

1887

Norms ●000		Examples 00000	
Norms			Pomona College

A function from a vector space \mathcal{V} to the positive real numbers \mathbb{R}_+ is a **norm** if it is positive definite, homogeneous, and satisfies the triangle inequality.

Norms ●000		Examples 00000	
Norms			Pomona College

A function from a vector space \mathcal{V} to the positive real numbers \mathbb{R}_+ is a **norm** if it is positive definite, homogeneous, and satisfies the triangle inequality.

In Other Words...

To prove that $\|\cdot\|$ is a norm, we must show three things:

- $\bullet ~ \| {\bf a} \|$ equals zero when ${\bf a} = {\bf 0}$ and is otherwise positive.
- $||c\mathbf{a}|| = |c|||\mathbf{a}||$ for any scalar c.
- $\|\mathbf{a} + \mathbf{b}\| \le \|\mathbf{a}\| + \|\mathbf{b}\| \text{ for all } \mathbf{a}, \mathbf{b}.$

A norm $\|\cdot\|$ is uniquely defined by the set $\{\mathbf{x} : \|\mathbf{x}\| = 1\}$, which can be any symmetric closed curve whose interior is convex and includes the origin.

The Euclidean norm $\|\cdot\|: \mathbb{R}^2 \to \mathbb{R}_+$ is the familiar measure of the magnitude of a vector. If $\mathbf{x} = (x_1, x_2)$, then

$$\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2}.$$

The Euclidean norm $\|\cdot\|: \mathbb{R}^2 \to \mathbb{R}_+$ is the familiar measure of the magnitude of a vector. If $\mathbf{x} = (x_1, x_2)$, then

 $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2}.$

The p norm on \mathbb{R}^2 is the function $\|\cdot\|_p:\mathbb{R}^2\to\mathbb{R}_+$ defined by

$$\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p)^{1/p}$$

The p norm on \mathbb{R}^2 is the function $\|\cdot\|_p:\mathbb{R}^2\to\mathbb{R}_+$ defined by

$$\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p)^{1/p}$$

A real **random variable** X is a variable that takes a range of values on the real line according to a distribution.

A real **random variable** X is a variable that takes a range of values on the real line according to a distribution.

Example

Let X be a Bernoulli random variable with parameter p. Then X is 1 with probability P(1) = p and 0 with probability P(0) = 1 - p.

	Random Vectors 0●0	Examples 00000	
Momen	ts		Pomona College

The d^{th} moment $\mu_d(X)$ of a random variable X is the expected value of X^d .

•
$$\mu_1 = \mathbf{E}[X]$$
 is the mean.

•
$$\mu_2 - \mu_1^2 = \mathbf{E}[X^2] - \mathbf{E}[X]^2$$
 is the variance.

	Random Vectors 0●0	Examples 00000	
Momen	its		Pomona College

The d^{th} moment $\mu_d(X)$ of a random variable X is the expected value of X^d .

•
$$\mu_1 = \mathbf{E}[X]$$
 is the mean.

•
$$\mu_2 - \mu_1^2 = \mathbf{E}[X^2] - \mathbf{E}[X]^2$$
 is the variance.

Example

Let X be a Bernoulli random variable with parameter p. Then

$$\mu_d(X) = \mathbf{E} \left[X^d \right] = 0^d (1-p) + 1^d(p) = p.$$

A real random vector X is a vector $(X_1, X_2, ..., X_n)$ where each X_i is a real random variable.

A real **random vector** X is a vector $(X_1, X_2, ..., X_n)$ where each X_i is a real random variable.

Definition

When all X_i in a random vector \mathbf{X} have the same distribution and are independent of each other, \mathbf{X} is independent and identically distributed, or *i.i.d.*

Let Y be a random vector such that no Y_i is a linear combination of other entries of Y. Then the function

$$\|\mathbf{x}\|_{\mathbf{Y},d} = \left(\mathbf{E}\left|\langle\mathbf{Y},\mathbf{x}
ight
angle
ight|^{d}
ight)^{1/d}$$

is a norm on \mathbb{R}^n . Here $\mathbf{x} \in \mathbb{R}^n$ and $\langle \cdot, \cdot \rangle$ is the dot product.

Let Y be a random vector such that no Y_i is a linear combination of other entries of Y. Then the function

$$\|\mathbf{x}\|_{\mathbf{Y},d} = \left(\mathbf{E}\left|\langle\mathbf{Y},\mathbf{x}
ight
angle
ight|^{d}
ight)^{1/d}$$

is a norm on \mathbb{R}^n . Here $\mathbf{x} \in \mathbb{R}^n$ and $\langle \cdot, \cdot \rangle$ is the dot product.

Example

$\ln \mathbb{R}^n$,

$$\|\mathbf{x}\|_{\mathbf{Y},d} = \left(\mathbf{E} |Y_1x_1 + Y_2x_2|^d\right)^{1/d}$$

We calculate the norm by summing over all four combinations.

$$\|\mathbf{x}\|_{\mathbf{Y},d}^d = \mathbf{E} |Y_1x_1 + Y_2x_2|^d$$

We calculate the norm by summing over all four combinations.

$$\begin{aligned} \|\mathbf{x}\|_{\mathbf{Y},d}^{d} &= \mathbf{E} |Y_{1}x_{1} + Y_{2}x_{2}|^{d} \\ &= p^{2} |(1)x_{1} + (1)x_{2}|^{d} + (1-p)^{2} |(0)x_{1} + (0)x_{2}|^{d} \\ &+ p(1-p) |(1)x_{1} + (0)x_{2}|^{d} + (1-p)p |(0)x_{1} + (1)x_{2}|^{d} \end{aligned}$$

We calculate the norm by summing over all four combinations.

$$\begin{aligned} \|\mathbf{x}\|_{\mathbf{Y},d}^{d} &= \mathbf{E} |Y_{1}x_{1} + Y_{2}x_{2}|^{d} \\ &= p^{2} |(1)x_{1} + (1)x_{2}|^{d} + (1-p)^{2} |(0)x_{1} + (0)x_{2}|^{d} \\ &+ p(1-p) |(1)x_{1} + (0)x_{2}|^{d} + (1-p)p |(0)x_{1} + (1)x_{2}|^{d} \\ &= p^{2} |x_{1} + x_{2}|^{d} + p(1-p) \left(|x_{1}|^{d} + |x_{2}|^{d} \right). \end{aligned}$$

$$\|\mathbf{x}\|_{\mathbf{Y},2}^{2} = p^{2}|x_{1} + x_{2}|^{2} + p(1-p)\left(|x_{1}|^{2} + |x_{2}|^{2}\right).$$

$$\|\mathbf{x}\|_{\mathbf{Y},10}^{10} = p^2 |x_1 + x_2|^{10} + p(1-p) \left(|x_1|^{10} + |x_2|^{10} \right).$$

		Examples 000●0	
Applica	tion		Pomona College

Portfolio Optimization

- Let Y be a random vector where each Y_i is a different investment distributed according to possible one-year returns, with mean 0.
- Let x be a vector of allocations, where each x_i is the amount invested in the investment Y_i, and the sum of the x_i is the total amount to be invested.

Then the standard deviation of the portfolio is

$$\|\mathbf{x}\|_{\mathbf{Y},2} = \left(\mathbf{E}|\langle \mathbf{Y}, \mathbf{x}
angle|^2\right)^{1/2}.$$

Since $\|\cdot\|_{\mathbf{Y},2}$ is a norm, it satisfies the triangle inequality, so any two risk-minimizing allocations have risk-minimizing average.

Example

Suppose we have \$10. If $\|\cdot\|_{\mathbf{Y},2}$ has the unit circle below, the risk-minimizing allocation is to put \$8.5 into Y_1 and \$1.5 into Y_2 .

A norm $\|\cdot\|$ on \mathbb{R}^n is symmetric if $\|\mathbf{x}\| = \|P\mathbf{x}\|$ for any $\mathbf{x} \in \mathbb{R}^n$ and permutation matrix P.

Example In \mathbb{R}^2 , symmetry means that $\|(x_1, x_2)\| = \|(x_2, x_1)\|$.

A norm $\|\cdot\|$ on \mathbb{R}^n is symmetric if $\|\mathbf{x}\| = \|P\mathbf{x}\|$ for any $\mathbf{x} \in \mathbb{R}^n$ and permutation matrix P.

Example In \mathbb{R}^2 , symmetry means that $\|(x_1, x_2)\| = \|(x_2, x_1)\|$.

Example

The *p*-norms $\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$ are symmetric.

		Examples 00000	Generalization 0●000
Hermit	ian Matrices		Pomona College

A square matrix A is Hermitian if $A = A^*$, where A^* is the conjugate transpose of A. The space of $n \times n$ Hermitian matrices is H_n .

		Examples 00000	Generalization 0●000
Hermit	ian Matrices		Pomona College

A square matrix A is Hermitian if $A = A^*$, where A^* is the conjugate transpose of A. The space of $n \times n$ Hermitian matrices is H_n .

Example

The following matrix is Hermitian.

$$\begin{bmatrix} 47 & 4-7i \\ 4+7i & -1 \end{bmatrix}$$

		Examples 00000	Generalization
Hermit	ian Matrices		Pomona College

A square matrix A is Hermitian if $A = A^*$, where A^* is the conjugate transpose of A. The space of $n \times n$ Hermitian matrices is H_n .

Example

The following matrix is Hermitian.

$$\begin{bmatrix} 47 & 4-7i \\ 4+7i & -1 \end{bmatrix}$$

Proposition

Hermitian matrices have only real eigenvalues.

Let $A \in H_n$. Let $\lambda(A)$ denote the vector of the eigenvalues of A in descending order.

Let $A \in H_n$. Let $\lambda(A)$ denote the vector of the eigenvalues of A in descending order.

Theorem

Let $\|\cdot\|$ be a symmetric norm on \mathbb{R}^n . Then $\|A\|_{\mathrm{H}} = \|\lambda(A)\|$ is a norm on H_n .

Let $A \in H_n$. Let $\lambda(A)$ denote the vector of the eigenvalues of A in descending order.

Theorem

Let $\|\cdot\|$ be a symmetric norm on \mathbb{R}^n . Then $\|A\|_{\mathrm{H}} = \|\lambda(A)\|$ is a norm on H_n .

Corollary

Let **Y** be i.i.d. Then
$$\|\mathbf{x}\|_{\mathbf{Y},d} = \left(\mathbf{E} |\langle \mathbf{Y}, \mathbf{x} \rangle|^d\right)^{1/d}$$
 is symmetric. Hence,
 $\|A\|_{\mathbf{Y},d}^{\mathrm{H}} = \left(\mathbf{E} |\langle \mathbf{Y}, \boldsymbol{\lambda}(A) \rangle|^d\right)^{1/d}$ is a norm on H_n .

		Examples 00000	Generalization 0000●
Thank	you		Pomona College

Thank you, Professor Garcia, Professor Chávez, and all my math professors and peers!