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Introduction

This thesis accompanies a paper [5] I co-wrote with my professors, Ángel Chávez
and Stephan Ramon Garcia. In the paper, we introduce a new family of norms
to measure matrices. The paper is technical and cannot be understood without
first understanding some advanced linear algebra 1 and probability theory 3.
Even then, its dense proofs require a fluency not common to undergraduates.

The central theorem of the paper, Theorem 100, proves that taking the mo-
ments of random variables multiplied by the eigenvalues of a Hermitian matrix
produces norms on the set of Hermitian matrices. The paper then goes through
several common distributions and makes norms using them before applying
those norms to different kinds of matrices.

In Chapter 1, I provide the linear algebra necessary to understand the crux
of the paper. I start by defining Hermitian matrices and prove that they have
certain properties which will be important later. Then, I describe what it means
for a matrix to be positive definite, so that I can later introduce “positive
definite” random vectors. Third, I introduce the concept of a norm of a matrix,
and I explain the requirements for a function to be a norm.

In Chapter 2, I prove that for any symmetric norm on Rn we can define a
second norm on the set of Hermitian matrices by applying the first norm to the
eigenvalues. As far as I or my advisor can tell, this is a novel result, and the
class of norms it defines is larger than class of the random vector norms we are
concerned with in the rest of the thesis.

In [1] and [5], Professor Chávez wrote a more abstract proof using algebraic
objects called normal decomposition systems as described in [9]. His proof
applied only to the norms described in Chapter 5. In earlier iterations of this
thesis, I attempted to distill [9]’s somewhat dry proofs about general convex
spaces into more concrete statements about Hermitian matrices comprehensible
to a student of linear algebra. In doing so, I found that some of the steps could
be proven directly using relatively accessible results from linear algebra without
resorting to [9]’s formalisms, and that the proof was generally applicable to any
norm on Rn. Professors Garcia, Chávez, and I are considering including my
new proof in another paper clarifying and expanding upon [5].

In Chapter 3, I cover the random part of random vector norms. I introduce
probability distributions and two kinds of functions to describe them (prob-
ability distribution functions and cumulative distribution functions). Then I
introduce moments and moment-generating functions, which will eventually be
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used to translate our norms into polynomials of a matrix’s eigenvalues. While
using the linear algebra concepts I described in Chapter 1, I define random
vectors, and I prove that the second moment matrix of a random vector of
independent, identically distributed random variables is positive definite. In
defining all these concepts, I give examples of common distributions that show
up in the paper, and I give special attention to the Pareto distribution, which
is the subject of my own contribution to the paper.

In Chapter 4, I provide an introduction to measure theory and how it relates
to the probability theory that I just described in Chapter 3. I redefine random
variables and their moments in measure-theoretical terms that allow us to prove
the triangle inequality of our norms using the Minkowski’s Inequality on Lp

norms.
Chapter 5 finally rigorously defines the class of norms induced by random

vectors. It then goes on to clearly explain some of the interesting corollaries
and applications that are quickly proven in the paper. These applications are
intended to illustrate the main theorem. I provide examples and illustrations,
and I discuss the norms for which the exponent p is odd or non-integer. Following
[1], I also introduce Hunter’s Theorem and show how we can use our norms to
prove it.

In Chapter 6, I introduce the Pareto distribution, which was the subject of
much of my contribution to [5]. Unfortunately, a tangential section on fractals
and Pareto distributions, a chapter examining moment problems (given a list of
real numbers, can we make a distribution with those moments?), and a potential
application to economics, which I mentioned in my thesis presentation, all had
to be cut for the sake of turning in a complete and bounded thesis in polynomial
time.

0.1 Sources

Since this thesis follows the paper [5], my sources for the later chapters are
also cited in the paper. While writing the linear algebra background chapter,
I revisited the Advanced Linear Algebra textbook [7] from Professor Garcia’s
class, which I took here at Pomona. To define eigenvalue norms, I used [4], [8],
and [14], but I knew what to look for from [9]. I then found a concise summary
of all these results in [2]. For the probability chapter, I used my notes as well as
the textbook [6] from Professor Radunskaya’s Math 151 class. A more thorough
grounding of probability theory in measure theory can be found in [3].
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Chapter 1

Linear Algebra

This thesis defines a class of norms on the set of Hermitian matrices. Before we
can do that, we need to understand what makes a function a norm and what
makes a matrix Hermitian.

1.1 Norms

Definition 1. A vector space V is a set endowed with the operations addition
and scalar multiplication.

Example 2. The set of n × n Hermitian matrices Hn is a vector space. For
A,B ∈ Hn, and c ∈ R, the matrices A + B (addition) and cA (scalar multipli-
cation) are both Hermitian matrices.

Definition 3. An inner product ⟨·, ·⟩ on a vector space V is a function from a
couple X,Y in V to a field of scalars (in this thesis, either the real numbers or
the complex numbers) that is symmetric, homogeneous, and distributive, and
for which ⟨A,A⟩ is positive definite. That is, for A,B,C ∈ V

1. ⟨A,A⟩ = ⟨A,A⟩,

2. ⟨A,B + C⟩ = ⟨A,B⟩+ ⟨A,C⟩,

3. ⟨cA,B⟩ = c⟨A,B⟩ for c ∈ R, and

4. ⟨A,A⟩ ≥ 0 with equality only at A = 0.

Example 4. In Cn, we define the inner product such that for complex vectors
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn),

⟨x,y⟩ = x1ȳ1 + x2ȳ2 + · · ·+ xnȳn =

n∑
i=1

xiȳi.
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Proposition 5. The Cauchy-Schwarz inequality states that for any inner prod-
uct ⟨·, ·⟩ on an inner product space V,

|⟨X,Y ⟩|2 ≤ ⟨X,X⟩⟨Y, Y ⟩

For a proof, see 5.4 in [7].

Definition 6. A norm is a function from a vector space to the non-negative
real numbers that is positive definite, homogeneous, and satisfies the triangle
inequality.

In other words, to prove that a function ∥ · ∥ from a vector space V to the
real numbers is a norm, one must prove that for all for all A and B in V,

1. ∥A∥ equals zero when A = 0 and is otherwise positive.

2. ∥cA∥ = |c|∥A∥ for any scalar c ∈ R, and

3. ∥A+B∥ ≤ ∥A∥+ ∥B∥.

1.1.1 The Euclidean Norm in R2

The Euclidean norm on 2 × 1 vectors well illustrates these basic properties of
norms. The Euclidean norm of a vector is the familiar notion of magnitude or
length.

Definition 7. The Euclidean norm ∥ · ∥2 in Rn is the square root of sum of the
squares of the components. If x ∈ R2,

∥x∥2 =
√
x2
1 + x2

2. (1.1)

Proposition 8. The function ∥ · ∥2 is a norm.

Proof. Let x ∈ R2.

1. ∥x∥2 equals zero when x = 0 and is otherwise positive.

Proof. ∥x∥2 =
√
x2
1 + x2

2 is positive unless x2
1 = x2

2 = 0.

2. For any scalar c, ∥cx∥2 = |c| ∥x∥2.

Proof. Let c be a real number.

∥cx∥2 =

√
(cx1)

2
+ (cx2)

2
=

√
c2
√

x2
1 + x2

2 = |c| ∥x∥.

Thus, ∥ · ∥ is homogeneous.
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3. Let x and y ∈ R2. Then ∥x+ y∥2 ≤ ∥x∥2 + ∥y∥2.
Proof. In R2, the triangle inequality states that in the triangle formed
by the sides x, y, and x + y, the length of the side x + y is less than or
equal to the sum of the lengths of the other two sides. Just drawing a
triangle shows that this has to be true, but we can prove it using the Law
of Cosines. Let θ be the angle between x and y. The Law of Cosines gives
that

∥x+ y∥2 = ∥x∥2 + ∥y∥2 − 2∥x∥∥y∥ cos θ.

Since for any x and y, the cosine of θ is always between -1 and 1,

∥x+ y∥2 = ∥x∥2 + ∥y∥2 − 2∥x∥∥y∥ cos θ ≤ ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥

Taking the square root of both sides leaves the triangle inequality.

∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Since it satisfies the three conditions, ∥ · ∥2 is a norm.

Example 9. Let x = (4, 2) and let y = (−1, 2). We calculate the norms of x
and y using the formula in Equation 1.1.

∥x∥2 =
√
42 + 22 =

√
20

∥y∥2 =
√

(−1)2 + 22 =
√
5.

Now let c = 1
2 . Then cx = (2, 1).

∥cx∥2 =
√
22 + 12 =

√
5 =

√
20

2
= |c|∥x∥2

This demonstrates homogeneity.
As we can see from the graph, x and y satisfy the triangle inequality.

∥x+ y∥ =
√
32 + 42 = 5 < ∥x∥+ ∥y∥ =

√
20 +

√
5 ≈ 6.708.

1.1.2 Unit Balls

A norm ∥ · ∥ on a vector space V is uniquely defined by its unit ball, the set of
u ∈ V such that ∥u∥ = 1. This is true because every non-zero element x in V
has a corresponding unit vector u such that x = cu for a positive scalar c, and
∥x∥ = c∥u∥ = c.

Proposition 10. Let x ∈ V. Then x = ∥x∥u for some u ∈ V such that ∥u∥ = 1.

3



x

y

yx+ y

x
2

Figure 1.1: Illustration of the triangle inequality for x = (4, 2) and y = (−1, 2)

Proof. If x = 0, x = ∥x∥u = 0u for any unit vector u. Let x be a nonzero
element of V. Since ∥ · ∥ is a norm, ∥x∥ ≠ 0 by positive-definiteness. Let
u = x

∥x∥ . Then ∥u∥ = 1
∥x∥∥x∥ = 1, and x = ∥x∥u.

Example 11. Let x ∈ Rn with x = (x1, x2, . . . , xn) The p-norm on Rn is
defined

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

.

In R2, this is

p
√

|x1|p + |x2|p.

The unit circles of the norms ∥x∥p for p = 1, 2, 3, and ∞ are shown in Figure
1.2.

1.1.3 Convexity

Definition 12. A function f : V → R is convex if and only if for all t such that
0 ≤ t ≤ 1 and A,B ∈ V,

f(tA+ (1− t)B) ≤ tf(A) + (1− t)f(B).

4



Figure 1.2: Unit circles of p-norms in R2. From the inside diamond to the
outside square, ∥ · ∥1, ∥ · ∥1.5, ∥ · ∥2, ∥ · ∥3, ∥ · ∥6, ∥ · ∥∞.
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Proposition 13. Let f : V → R be homogeneous. Then f is convex if and only
if f satisfies the triangle inequality.

Proof. ( =⇒ ) Let f be homogeneous and convex. The case where t = 1/2
guarantees the triangle inequality, since

f(A+B) = f(
2A

2
+

2B

2
) ≤ f(2A)

2
+

f(2B)

2
= f(A) + f(B),

( ⇐= ) Let f be homogeneous and satisfy the triangle inequality. Then

f(tA+ (1− t)B) ≤ f(tA) + f((1− t)B) = tf(A) + (1− t)f(B).

Hence f is convex.

1.2 Hermitian Matrices

1.2.1 Conjugate Transpose

Definition 14. LetA ∈ Mm×n be a complex matrix with entries aij = Re (aij)+
i Im (aij). The conjugate transpose of A, denoted A∗, is the n×m matrix with
entries aij = Re (aji)− i Im (aji).

1.2.2 Defining Hermitian Matrices

Definition 15. A square matrix A is Hermitian if A = A∗.

Example 16. The following matrix is Hermitian. 2 5 + i −3i
5− i −8 0
3i 0 4


The reason we focus on Hermitian matrices in this thesis is that though

Hermitian matrices can be complex, the eigenvalues of Hermitian matrices are
always real. This result will allow us to create norms on the set of Hermitian
matrices (which are functions from the set of Hermitian matrices to the real
numbers) using polynomials of the eigenvalues of Hermitian matrices.

Theorem 17. The eigenvalues of a Hermitian matrix are real.

Proof. Let λ be the eigenvalue of a Hermitian matrix A associated with an
eigenvector x. Then

Ax = λx.

Multiplying both sides from the right by the conjugate transpose of x, we obtain

x∗Ax = x∗λx = λ∥x∥2.

6



Taking the conjugate transpose of both sides gives us

x∗A∗x = λ∥x∥2.

Since A = A∗, we can replace the A∗ with A. We conclude that λ = λ̄, so λ is
real.

1.2.3 Spectral Theorem

See [7] Theorem 14.2.2.

Definition 18. A matrix U is unitary if UU∗ = I. In other words, the columns
xi of U form an orthonormal basis in Cn, since

(UU∗)ij = ⟨xi,xj⟩ =

{
1 if i = j,

0 if i ̸= j.

Lemma 19. Let A be Hermitian and let Ax = λ1x and Ay = λ2y with λ1 ̸= λ2.
Then ⟨x,y⟩ = 0.

Proof. Since A = A∗, the conjugate transpose of Ay = λ2y is y∗A = y∗λ2.
Multiplying on the right by x,

y∗Ax = y∗λ2x = λ2⟨x,y⟩. (1.2)

Since Ax = λ1x,

y∗Ax = y∗λ1x = λ1⟨x,y⟩. (1.3)

Subtracting 1.3 from 1.2,

(λ2 − λ1)⟨x,y⟩ = 0.

Since λ1 ̸= λ2, ⟨x,y⟩ must be 0.

Definition 20. Define the eigenvalue vector λ(·) : Hn → Rn such that for
A ∈ Hn, λ(A) is the vector of the eigenvalues of A in non-increasing order. In
other words, λ(A) = (λ1, λ2, . . . , λn) where λ1 ≥ λ2 ≥ · · · ≥ λn.

Proposition 21. Let A be a Hermitian matrix, and let

Λ = diag (λ) =


λ1

λ2

. . .

λn

 .

Then A is unitarily diagonalizable. Specifically, there is a unitary U ∈ Mn such
that

A = UΛU∗.

7



Proof. Let the eigenspace Eλk
refer to the null space of A − λkI. A vector x

is in Eλk
if and only if x is either the zero vector or an eigenvector associated

with λk, since if (A− λkI)x, then Ax = λkx.
By Lemma 19, any two nonzero vectors in the eigenspaces corresponding to

distinct eigenvalues are orthogonal, so the eigenspaces are orthogonal.
Since the dimension of an eigenspace Eλk

is the multiplicity of λk in λ, we
can choose dimEλk

orthogonal vectors ui in Eλk
. If we thus choose dimEλk

orthonormal eigenvectors for each λk, we end up with n orthonormal ui. Like
any set of n independent vectors, the ui form an orthonormal basis of Cn.

We can now define U as the matrix with columns ui. Since ui are eigenvec-
tors associated with λi,

Aui = λiui = uiλi.

So AU = UΛ, since UΛ multiplies the ith column of U by λi. Multiplying on
the right by U∗,

AUU∗ = UΛU∗.

Since U is unitary, UU∗ = I, so AUU∗ = A = UΛU∗.

1.3 Positive Definiteness

To make our norms, we will need functions that take vectors of the eigenvalues
of a matrix to non-negative real numbers. We do this by using positive definite
random matrices. Before we get into random matrices, it is worth recalling what
is meant by a positive definite matrix in the first place.

Definition 22. A Hermitian matrix A ∈ Hn (C) is positive definite if ⟨Ax,x⟩ >
0 for all nonzero vectors x in Cn.

An equivalent definition is that a positive definite matrix is a Hermitian
matrix with positive eigenvalues [7] (15.1.3).

Proposition 23. A Hermitian matrix A is positive definite if and only if all
its eigenvalues are positive.

Proof. ( =⇒ ) Let A be positive definite and let λ be an eigenvalue of A. For
some non-zero x, Ax = λx. Multiplying each side by x∗,

⟨Ax,x⟩ = x∗Ax = x∗λx = λ⟨x,x⟩.

Since ⟨x,x⟩ and ⟨Ax,x⟩ are positive, λ = ⟨Ax,x⟩
⟨x,x⟩ is positive.

( ⇐= ) Let A be a Hermitian matrix with positive eigenvalues λ1, λ2, . . . , λn.
By Proposition 21 A has the decomposition A = UΛU∗, where

Λ = diag (λ1, λ2, . . . , λn) .

8



Then

x∗Ax = x∗UΛU∗x = (U∗x)∗Λ(U∗x) =

n∑
i=1

(U∗x)i(U
∗x)iλi.

Since the λi are positive and (U∗x)i(U
∗x)i is positive, x

∗Ax is positive.

Definition 24. A Hermitian matrix A ∈ Hn (C) is positive semi-definite if
x∗Ax ≥ 0 for all nonzero vectors x in Cn.

Remark 25. By a similar proof to 1.3, we can prove that all the eigenvalues of
a positive semi-definite matrix are real and non-negative.

Proposition 26. The sum of a positive definite and a positive semi-definite
matrix is positive definite.

Proof. Let A be positive definite and B positive semi-definite. Let x ̸= 0. Then

x∗(A+B)x = x∗Ax+ x∗Bx ≥ x∗Ax+ 0 > 0.

So A+B is positive definite.

1.4 Matrix Norms

Since the set of n × n complex-valued matrices is closed under addition and
scalar multiplication, it is a vector space, so we can also define norms on it.

1.4.1 Norms on Hermitian Matrices

This thesis concerns a class of norms defined on the set of Hermitian matrices,
which is a subspace of the vector space of complex-valued matrices. Certain
properties of Hermitian matrices make it easier to define norms on them than
on the larger set of square matrices. The first useful property will be helpful
with establishing the positive-definiteness of our norms.

Proposition 27. If the eigenvalues of a Hermitian matrix are zero, that matrix
equals zero.

Proof. LetA ∈ Hn, and let all the eigenvalues ofA be zero. SinceA is Hermitian,
for some unitary U ∈ Mn, A = UΛU∗, where Λ = diag(0, 0, . . . , 0) = 0. Thus,
A = U0U∗ = 0.

1.4.2 Singular Values

Definition 28. Let A ∈ Mn. The singular values of A are the square roots of
the eigenvalues of the matrix A∗A.

Proposition 29. Singular values exist and are real and non-negative.
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Proof. Let A ∈ Mn. Since the eigenvalues of positive semi-definite matrices are
non-negative, it suffices to show that A∗A is positive semi-definite. Let x be a
vector in Cn.

⟨A∗Ax,x⟩ = ⟨A∗ (Ax) ,x⟩ = ⟨Ax, Ax⟩.

The inner product of a vector x with itself is always real and non-negative, and
equal to zero only if x = 0. So A∗A is positive semi-definite. Thus, the square
roots of its eigenvalues, which are the singular values of A, exist and are real
and non-negative.

Because they are so well-behaved, many of the most well-known matrix
norms can be defined using symmetric functions of singular values.

Proposition 30. The singular values of a matrix A are zero if and only if A
is the zero matrix.

Proof. Let A ∈ Mn.
( =⇒ ) If A = 0, A∗A = 0, so the singular values of A, which are the eigenvalues
of A∗A, are also zero.
( ⇐= ) Let the singular values of A be zero. Then the eigenvalues of A∗A are
zero. Since A∗A is positive definite, it is Hermitian. By Proposition 27, since
its eigenvalues are zero, A∗A = 0.

Let x be an arbitrary vector in Cn. Since A∗A = 0,

⟨x, A∗Ax⟩ = ⟨Ax, Ax⟩ = 0.

So Ax = 0. Since x is arbitrary, A = 0n×n.

Proposition 31. Singular values are homogeneous.

Proof. Let A ∈ Mm×n, and let c be a non-negative real number. If the eigenval-
ues of A∗A are σ2

1 , σ
2
2 , . . . , σ

2
n, where σi are singular values of A, (cA)∗(cA) =

c2A∗A has eigenvalues c2σ2
1 , c

2σ2
2 , . . . , c

2σ2
n.

So cA has singular values cσ2
1 , cσ

2
2 , . . . , cσ

2
n.

Since the singular values are already positive definite and homogeneous, it
is relatively straightforward to define norm functions using them.

The nuclear norm ∥A∥1 simply sums the singular values.

∥A∥1 = σ1 + σ2 + · · ·+ σn

The spectral norm ∥ · ∥∞ returns the largest singular value.
Perhaps most familiar to newer students of linear algebra is the Frobenius

norm ∥ · ∥2, which is equivalent to the Euclidean norm in Rn on the vector of
singular values. .
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Chapter 2

Eigenvalue Norms

Our norms use neither the singular values nor the entries of Hermitian matrices.
Instead, they are functions of the eigenvalues. Since the eigenvalues of Hermitian
matrices are not necessarily already positive, our norms will have to be positive
definite functions.

Norms on the set of Hermitian matrices that are, like ours, defined using
eigenvalues, correspond to norms on Rn.

Definition 32. A function f on Rn is symmetric if f(x) = Px for all x ∈ Rn

and n× n permutation matrices P .

Example 33. If n = 3, f is symmetric if

f(x1, x2, x3) = f(x1, x3, x2) = f(x2, x1, x3)

= f(x2, x3, x1) = f(x3, x1, x2) = f(x3, x2, x1).

Theorem 34. Let ∥·∥H be a norm on the Hermitian matrices such that ∥·∥H =
∥λ(·)∥ for some symmetric function ∥ · ∥ : Rn → R. Then ∥ · ∥ is a norm on Rn.

Remark 35. See 20 for the definition of the function λ(·) : Hn → Rn.

Proof. Let a ∈ Rn with a = a1, a2, . . . , an. Define the matrix diag a ∈ Hn

diag a =


a1

a2
. . .

an

 .

The eigenvalues of a diagonal matrix are its diagonal entries, so λ(diag a) = Pa
for some permutation matrix P . Since ∥ · ∥ is symmetric,

∥a∥ = ∥Pa∥ = ∥λ(diag a)∥ = ∥diag a∥H.

Since ∥ · ∥H is a norm on the Hermitian matrices, and since addition and scalar
multiplication work the same for vectors and diagonal matrices, ∥ · ∥ inherits all
the properties of a norm in Rn:

11



1. a = 0 ⇐⇒ diag a = 0n×n. Since ∥ · ∥H is positive definite, ∥a∥ =
∥ diag a∥H is positive definite.

2. ∥ca∥ = ∥ diag ca∥H = ∥cdiag a∥H = |c|∥diag a∥H = |c|∥a∥.

3. ∥a+ b∥ = ∥diag(a+ b)∥H ≤ ∥diag(a)∥H + ∥diag(b)∥H = ∥a∥+ ∥b∥.

We now proceed to prove the reverse: not only does every norm on the set
Hn defined using eigenvalues induce a norm on Rn, but also, every norm on Rn

induces a norm on Hn.

Theorem 36. Let ∥ ·∥ be a symmetric norm on Rn, and define λ(·) : Hn → Rn

such that λ(A) = (λ1(A), · · · , λn(A)) is the vector of the eigenvalues of A in
non-increasing order. Then ∥ · ∥H = ∥λ(·)∥ is a norm on the set of Hermitian
matrices Hn.

Positive Definiteness

Proof. By 27, A = 0 ⇐⇒ λ(A) = 0. Thus, if ∥ · ∥ is positive definite, so is
∥ · ∥H = ∥λ(·)∥.

Homogeneity

Proof. All matrices satisfy λ(cA) = cλ(A), so if ∥ · ∥ is homogeneous,

∥cA∥H = ∥λ(cA)∥ = ∥cλ(A)∥ = |c|∥λ(A)∥ = |c|∥A∥H.

Thus, ∥ · ∥H is homogeneous.

Triangle Inequality

As is often the case, the triangle inequality is hardest to prove. I wrote this
whole section before finding it, but Chapter II of [2] includes everything until
Theorem 47.

2.1 Majorization

Definition 37. Let x and y be vectors in Rn with non-increasing elements.
Then x majorizes y if

k∑
i=1

xi ≥
k∑

i=1

yi

for all 1 ≤ k ≤ n, and

n∑
i=1

xi =

n∑
i=1

yi.

When x majorizes y, we write x ≻ y.

12



Example 38. The vector x = (5, 2,−1) majorizes y = (3, 3, 0).

Definition 39. A matrix D is doubly stochastic if the sum of each row equals
1, the sum of each column equals 1, and all entries are non-negative.

The following two lemmas are due to Hardy, Littlewood, and Pólya (1929) [8]
and Birkhoff (1946) [4], respectively. An elegant constructive proof of Lemma
40 can be found in [15].

Lemma 40. Let x,y ∈ Rn and let x majorize y. Then there exists a doubly
stochastic matrix D such that y = Dx.

Lemma 41. Let D be an n × n doubly stochastic matrix. Then there exist

permutation matrices Pi and non-negative coefficients ci such that
∑n2

i=1 ci = 1
and

D =

n2∑
i=1

ciPi.

Proof. We can construct our ci and Pi by repeatedly subtracting off permutation
matrices scaled to the smallest non-zero entries. Since these non-zero entries
are less than or equal to the sum of each row and column, and permutation
matrices have rows and columns that sum to 1, subtracting off each ciPi leaves
a matrix that still has non-zero entries whose rows and columns all have the
same sum. We then repeat this process at most n2 times, since each time we
subtract a ciPi, we eliminate at least one non-zero element, and there are at
most n2 non-zero elements in an n × n matrix to begin with. The following
example is helpful.

Example 42. Consider the doubly stochastic matrix

D =

0.6 0.4 0
0.3 0.2 0.5
0.1 0.4 0.5

 .

We start Birkhoff’s algorithm by subtracting off the lowest non-zero entry c1 =
0.1 times a permutation matrix whose 1s correspond to non-zero elements.

D − c1P1 = D − 0.1

0 1 0
0 0 1
1 0 0

 =

0.6 0.3 0
0.3 0.2 0.4
0 0.4 0.5

 .

Here, all entries are still non-negative and all the rows and columns sum to
1−0.1 = 0.9. The new smallest nonzero element is 0.2. Subtracting off c2 = 0.2
times another permutation matrix that includes the 0.2, we get

D − c1P1 − 0.2

1 0 0
0 1 0
0 0 1

 =

0.4 0.3 0
0.3 0 0.4
0 0.4 0.3

 .

13



All rows and columns now sum to 1 − 0.1 − 0.2 = 0.7. We repeat the process
twice more, with c3 = 0.3 and c4 = 0.4, until we conclude that D − (c1P1 +
c2P2 + c3P3 + c4P4) = 0.

Definition 43. Let A ∈ Hn. Let V be an m-dimensional subspace of Cn. The
partial trace, denoted trA |V , is the sum

trA |V =

m∑
i=1

v∗i Avi, (2.1)

where v1, v2, . . . , vm is any orthonormal basis of V .

The following Lemma follows Terence Tao’s blog post [14].

Lemma 44. Let A ∈ Hn and let λ(A) be the vector of eigenvalues of A in
non-increasing order. Then for 1 ≤ k ≤ n, and subspaces V of Cn,

k∑
i=1

λi(A) = λ1(A) + · · ·+ λk(A) = sup
dim(V )=k

trA |V .

Corollary 45. For all A,B ∈ Hn and 1 ≤ k ≤ n, the extreme partial trace
satisfies the triangle inequality.

λ1(A+B) + · · ·+ λk(A+B) ≤ λ1(A) + · · ·+ λk(A) + λ1(B) + · · ·+ λk(B).

Proof. By Lemma 44,

k∑
i=1

λi(A+B) = sup
dim(V )=k

tr(A+B) |V

Using 2.1, we can distribute.

tr(A+B) |V =

m∑
i=1

v∗i (A+B)vi =

m∑
i=1

(v∗i Avi + v∗i Bvi) = trA |V + trB |V .

The supremum function is convex, so

sup
dim(V )=k

(trA |V + trB |V ) ≤ sup
dim(V )=k

trA |V + sup
dim(V )=k

trB |V

Using 2.1 again, we get

sup
dim(V )=k

trA |V + sup
dim(V )=k

trB |V =

k∑
i=1

λi(A) +

k∑
i=1

λi(B)

Thus, the function
∑k

i=1 λi(·) satisfies the triangle inequality on Hn.

Theorem 46. Let λ(A) denote the vector eigenvalues of a Hermitian matrix
A ordered from largest to smallest. Then λ(A) + λ(B) majorizes λ(A+B) for
all A,B ∈ Hn.
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Proof. The inequality when k ≤ n follows directly from Corollary 45. For all
1 ≤ k ≤ n,

k∑
i=1

λi(A+B) ≤
k∑

i=1

λi(A) + λi(B).

At n, we have equality, since the sum of the eigenvalues of a matrix is its trace:

n∑
i=1

λi(A+B) = tr(A+B) = trA+ trB =

n∑
i=1

λi(A) + λi(B).

Therefore, λ(A) + λ(B) majorizes λ(A+B).

Theorem 47. We can write λ(A+B) as the sum of non-negative constants ci
times permutation matrices Pi times λ(A)+λ(B), where the sum of the ci is 1:

λ(A+B) =

n!∑
i=1

ciPi(λ(A) + λ(B)).

Proof. Since λ(A) + λ(B) majorizes λ(A+B), Lemma 40 ensures that we can
produce a stochastic matrix D such that

λ(A+B) = D(λ(A) + λ(B)).

From Lemma 41, we can express D as a sum of permutations times non-negative
constants adding to 1.

Triangle Inequality

Proof. Let A,B ∈ Hn. By Lemma 47,

∥A+B∥H = ∥λ(A+B)∥ = ∥
n!∑
i=1

ciPi(λ(A) + λ(B))∥.

Since ∥ · ∥ satisfies the triangle inequality,

∥
∑
i

ciPi(λ(A) + λ(B))∥ ≤
∑
i

∥ciPi(λ(A) + λ(B))∥.

Since ∥ · ∥ is homogeneous,∑
i

∥ciPi(λ(A) + λ(B))∥ =
∑
i

ci∥Pi(λ(A) + λ(B))∥.

Since ∥ · ∥ is symmetric, it is invariant under permutations, so∑
i

ci∥Pi(λ(A) + λ(B))∥ =
∑
i

ci∥(λ(A) + λ(B))∥.
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Since the ci sum to 1,∑
i

ci∥(λ(A) + λ(B))∥ = ∥(λ(A) + λ(B))∥.

Finally, since ∥ · ∥ satisfies the triangle inequality,

∥λ(A) + λ(B))∥ ≤ ∥λ(A)∥+ ∥λ(B))∥ = ∥A∥H + ∥B∥H

Thus, ∥ · ∥H satisfies the triangle inequality.
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Chapter 3

Probability Theory

The matrix norms in [5], which we introduce in Chapter 5 are constructed
using properties of random vectors. In Chapter 6, we will introduce the Pareto
distribution and examine the matrix norms it can induce. This chapter aims
to provide enough background in probability theory to define our norms and to
understand the Pareto distribution.

3.1 Random Variables

Definition 48. A real random variable X is a variable that takes on a range
of values on the real line according to a probability distribution. For a more
rigorous definition of a random variable using measure theory, see Section 4.3.

Some well-known probability distributions are the Bernoulli distribution, the
normal distribution, and the exponential distribution.

Definition 49. A discrete real random variable is one in which the number of
values that X can take on is finite or at most countably infinite.

Example 50. A Bernoulli random variable X is one that takes on the value 1
with probability p and 0 with probability 1− p. Since X can take on only two
possible values, X is discrete.

Definition 51. A continuous real random variable X is one which can take on
any value in one or more intervals of the real line, but for which the probability
that X has any specific value in R is zero.

Definition 52. The probability distribution function or PDF of a continuous
real random variable X represents X’s density of likelihood for every point in R.
The probability that X falls within an interval [a, b] is the integral from a to b
of the PDF. No point can have negative probability, and since total probability
must add up to 1, ∫ ∞

−∞
PDF(x) dx = 1.

17



Figure 3.1: Normal PDFs

Example 53. The normal distribution is known as the ‘bell curve’ because
its Probability Distribution Function resembles a bell. In a normal curve with
mean µ and standard deviation σ, the PDF is

PDF(x) = f(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )

2

.

The PDFs of normal distributions with varying parameters µ and σ are shown
in Figure 3.1.

Definition 54. The support of a continuous random variable is the closure of
the set of points x ∈ R for which PDFX(x) > 0. A random variable X cannot
take on any value that is not in its support.

Example 55. The exponential distribution is used to estimate the time between
spontaneous events whose occurrence is independent of other such events. Its
positive real parameter λ determines the steepness of the curve; that is, as λ
grows, so grows the probability that X is near zero. If X is an exponential
random variable with parameter λ, its PDF is

PDF(x) =

{
λe−λx if x ≥ 0,

0 if x < 0.

18



Figure 3.2: Exponential PDFs
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Since λe−λx is always greater than zero for positive λ, if X is exponential,
the support of X in R is [0,∞).

Definition 56. The cumulative distribution function or CDF of a continuous
random variable gives for each x in R the probability thatX takes on a value less
than or equal to x. If X is discrete, the CDF of x is the sum of the probabilities
of all values less than or equal to x. If X is continuous, it is the integral from
negative infinity to x of the PDF of X. Since the probabilities and probability
densities are always positive, and the integral over all R is 1,

lim
x→−∞

CDF(x) = 0,

and

lim
x→∞

CDF(x) = 1.

Example 57. The CDFs of normal and exponential distributions are shown in
Figure 3.3.

3.1.1 Moments

Definition 58. The expected value, or mean, of a random variable X, denoted
E [X] , is the average of the values of X weighted by probability or probability
density.

For a discrete random variable, let p(x) be the probability of x in X. The
expected value of X is calculated by taking the sum over all the values x that
X can take on of xp(x).

E [X] =
∑

x: p(x)>0

xp(x).

For continuous random variables, the integral takes the place of the sum, and
the probability density takes the place of discrete probabilities.

E [X] =

∫ ∞

−∞
xPDF(x) dx.

Remark 59. The existence of an expected value is not guaranteed. For example,
in Chapter 6, we examine the Pareto Distribution, which does not have a mean
when its parameter α is less than 1.

Definition 60. The nth moment of a random variable X, denoted µn(X), is
the expected value of Xn.

Definition 61. The variance σ2 of a random variable X is µ2 − µ2
1, where µi

is the ith moment of X:

σ2 = µ2 − µ2
1 = E[X2]− 2E[Xµ1] + µ1)

2 = E
[
(X − µ1)

2
]
.

A random variable X is constant almost everywhere if and only if its variance
σ2 = E

[
(X − µ1)

2
]
is zero.
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(a) Normal Distribution CDFs

(b) Exponential Distribution CDFs

Figure 3.3
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Example 62. For the Bernoulli distribution with probability p(1) = p, the nth
moments are

µn = E [Xn] =

1∑
i=0

inp(i) = 0n (1− p) + 1np = p.

Example 63. If X has exponential distribution with parameter λ, the moments
are

µn = E [Xn] =

∫ ∞

0

xnλe−λx dx. (3.1)

We can integrate by parts until we get rid of the exponent. Using u(x) = e−λx

and v′(x) = xn,

λ

∫ ∞

0

xne−λx dx = λ
xne−λx

−λ

∣∣∣∞
0

− λ

∫ ∞

0

nxn−1e−λx

−λ
dx.

Since we are evaluating from 0 to infinity, every term uv on the left is zero,
since for each natural number k > 0, 0ke−λ0 = 0 and limx→∞ xke−λx = 0. The
negative from integration by parts and from the −λ in the denominator cancel,
so this becomes

λ

∫ ∞

0

n!x0e−λx

λn
dx =

λn!e−λx

−λn+1

∣∣∣∞
0

= 0−
(
−n!

λn

)
=

n!

λn
= µn.

If moments exist for all n, it is sometimes useful to construct functions whose
Taylor series coefficients are related to the moments of a distribution.

3.1.2 Moment Generating Functions

Definition 64. Let X be a real random variable with that whose moments
µn exist for all n ∈ N. The moment generating function, or MGF, of X is the
function

MGF(t) = 1 + µ1t+
µ2

2!
t2 +

µ3

3!
t3 + · · · .

By the definition of µn, this is

1 +E [X] t+
E
[
X2
]

2!
t2 +

E
[
X3
]

3!
t3 + · · · = E

[
1 +Xt+

X2

2!
t2 +

X3

3!
t3 + · · ·

]
,

which is the Taylor expansion of

E
[
etX
]

in a neighborhood around t = 0.
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Example 65. The use of the Taylor series identity makes finding the moments
of our same exponential variable X from 63 much easier than the somewhat
tedious process of integration by parts of 3.1. Let X be exponential with pa-
rameter λ. The MGF of X is

E
[
etX
]
=

∫ ∞

0

etx
(
λe−λx

)
dx =

λe(t−λ)x

t− λ

∣∣∣∞
0

=
λ

t− λ
=

1

1− t
λ

The Taylor series of 1
1− t

λ

is

1

1− t
λ

= 1 +
t

λ
+

t2

λ2
+

t3

λ3
+ · · · = 1 + µ1t+

µ2

2!
t2 +

µ3

3!
t3 + . . . .

So µn = n!
λn .

Proposition 66. Let independent random variables X and Y have moment
generating function MX and MY respectively. Then the moment generating
function of Z = X + Y is the product MXMY .

Proof. Let Z = X + Y . Then

MZ(t) = E
[
etZ
]
= E

[
et(X+Y )

]
= E

[
etXetY

]
.

Since X and Y are independent, so are etX and etY , so the expected value of
their product is the product of their expected values. Hence

MZ(t) = E
[
etXetY

]
= E

[
etX
]
E
[
etY
]
= MX(t)MY (t).

Thus, the MGF of a sum of independent random variables is the product of
their MGFs.

3.2 Random Vectors

Definition 67. A real random vector X is a column vector [X1, X2, . . . , Xn]
T

where each Xi is a real random variable.

Definition 68. When all Xi in a random vector X have the same distribu-
tion and are independent of each other, the random variables are called i.i.d.
(independent and identically distributed).

3.2.1 Second Moment Matrix

Definition 69. For a random vector X of dimension n, the second moment
matrix Σ(X) is the n× n matrix of the expected values of XiXj .

Σ(X) = E[XXT] =


E[X2

1 ] E[X1X2] · · · E[X1Xn]
E[X2X1] E[X2

2 ] · · · E[X2Xn]
...

...
. . .

...
E[XnX1] E[XnX2] · · · E[X2

n]

 .
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Definition 70. We call a random vector positive definite when its second mo-
ment matrix is positive definite.

Theorem 71. Let X be a random vector of dimension n composed of n i.i.d.
random variables Xi with at least two moments µ1 and µ2. If the Xi are non-
constant, the second moment matrix Σ(X) is positive definite.

Proof. Since the Xi are independent, the non-diagonal entries Σ(X)ij where
i ̸= j are

Σ(X)ij = E[XiXj ] = E[Xi]E[Xj ] = µ2
1.

The diagonal entries are

Σ(X)ii = E[X2
i ] = µ2.

So the second moment matrix Σ(X) equals
µ2 µ2

1 · · · µ2
1

µ2
1 µ2 · · · µ2

1
...

...
. . .

...
µ2
1 µ2

1 · · · µ2

 = µ2
1


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

+ (µ2 − µ2
1)


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

This is µ2
1J + σ2I, where J is the all-ones matrix, σ2 is the variance (see 61),

and I is the identity matrix diag(1, 1, . . . , 1). Since all its columns are the same,
their span has dimension of 1, and the null space has dimension n−1. So J has
just one nonzero eigenvalue.

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1



1
1
...
1

 =


n
n
...
n

 .

Since J is Hermitian and its only non-zero eigenvalue, n, is positive, the all-ones
matrix is positive semi-definite. The identity matrix is positive definite. If the
Xi are non-constant, the variance σ2 > 0.

Since the sum of a positive definite and a positive semi-definite matrix is pos-
itive definite (See Proposition 26), the second moment matrix Σ(X) is positive
definite.
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Chapter 4

Measure Theory

The treatment in Section 3.1 of random variables and their moments is intuitive
and adequate for understanding how our norms are constructed and what they
look like. However, for a more rigorous definition of a random variable, and in
order to prove the triangle inequality for our norms (see Subsection 4.3.2), we
need measure theory.

4.1 Measure Spaces

Definition 72. Let Ω be a non-empty set, and let P(Ω) denote the power set
of Ω, the set of all subsets of Ω. The set F ⊆ P(Ω) is a σ-algebra on Ω if it is
non-empty and closed under complement, countable intersection, and countable
intersection. That is, if for all sets A,B ∈ F ,

1. Ac ∈ F ,

2. A ∪B ∈ F , and

3. A ∩B ∈ F .

Definition 73. Let Ω be a non-empty set, and let F be a σ-algebra on Ω. The
double (Ω,F) is called a measurable space.

Definition 74. Let Ω be a set, and let F be a σ-algebra on S. A measure µ is
a set function from F to [0,∞] that is positive semi-definite, takes ∅ to 0, and
is finitely additive:

1. µ(A) ≥ 0 for all A ∈ F ,

2. µ(∅) = 0, and

3. µ(A) + µ(B) = µ(A ∪B) if A and B are disjoint sets in F .

Definition 75. A measure space (Ω,F , µ) is a triplet composed of a set S, a
σ-algebra F on Ω, and a measure µ on F .
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Remark 76. Unfortunately, it is not possible to define a measure on the power
set of R with all three characteristics. Instead, by using a smaller σ-algebra
called the Borel σ-algebra, we will be able to define probability measures.

Definition 77. The Borel σ-algebra of R, denoted B, is the σ-algebra generated
by the open sets of R. That is, a set B ⊆ R is an element of B if it is the result
of a countably many intersection, union, and complement operations on open
sets of R.

Definition 78. Let (Ω1,F1, µ) be a measure space and let (Ω2,F2) be a mea-
surable space. A function f : Ω1 → Ω2 is a measurable function if for every
subset A2 ∈ F2, the preimage of A2 under f , denoted f−1(A2), is a subset in
F1 and is thus measurable by µ.

Definition 79. Let (Ω1,F1, µ) be a measure space and let (Ω2,F2) be a measur-
able space. The pushforward measure µf of a measurable function f : Ω1 → Ω2

is the measure which satisfies µf (A2) = µ(f−1(A2)) for all A2 ∈ F2.

4.2 Lebesgue Integration

Definition 80. Let (Ω,F , µ) be a measure space and, considering the measur-
able space (R,B), define a measurable function f : Ω → R.

Define the function f∗ : [1,∞) → R such that f∗(t) is the µ-measure of
subset Et ∈ F such that ω ∈ Et whenever f(ω) > t.

f∗(t) = µ ({ω ∈ Ω | f(ω) > t}) .

In other words, f∗(t) returns the measure of the preimage f−1((t,∞)). Since
any set (t,∞) is an element of B, and f is a measurable function, every Et =
f−1(t,∞) is a µ measurable set, so f∗ is well defined.

Definition 81. The Lebesgue integral of f over Ω, denoted∫
E

f dµ,

is the Riemann integral ∫ ∞

0

f∗(t) dt.

Remark 82. Our choice of ∗ in f∗ is intended to inspire notions of the transpose.
Instead of calculating the area under f by using f -tall and progressively narrower
rectangles, as in normal Reimann integration, we use f∗-wide and progressively
shorter rectangles stacked on top of each other.

Intuitively, Lebesgue integrals find the area under a curve by summing up dt-
thick layers, one layer at a time, much like a 3D printer. If Riemann integration
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is like building a picket fence whose parapets are the shape of f , with many
progressively thinner vertical slats (of width dx) placed next to each other,
Lebesgue integration is like building a masonry wall of the same size and with
the same f -shaped parapets with progressively shorter bricks (of height dt).

The advantage of Lebesgue integration is that if the x-axis has an irregu-
lar measure, that can be accounted for every time you add a layer. For in-
stance, many measurable functions from spaces with probability measures are
not amenable to Riemann integration for this reason.

Proposition 83. Let (Ω,F , µ) be a measure space, equip R with the Borel
σ-algebra in the measurable space (R,B), and let f be a measurable function
that induces the pushforward measure µf on (R,B), and let g be a measurable
function from R to R. If they exist, the Lebesgue integrals∫

Ω

g ◦ f dµ and

∫
R
g d(µf )

are equal.

Proof. Integrating the Lebesgue integral on the left, we would construct a func-
tion (g ◦ f)∗ such that (g ◦ f)∗(t) = {ω ∈ Ω | g(f(ω)) > t} and integrate it from
t = 0 to infinity.

Evaluating the integral on the right, we construct g∗ such that g∗(t) is the µf

measure of the set Bt ∈ B that contains those points x in R such that g(x) > t.
Formally,

g∗(t) = µf (Bt) = µf ({x ∈ R | g(x) > t}).

The preimage of Bt under f is the set

f−1(Bt) = {ω ∈ Ω | f(ω) ∈ Bt}.

The real number f(ω) is in Bt if and only if it satisfy the condition g(f(ω)) > t.
Thus,

f−1(Bt) = {ω ∈ Ω | g(f(ω)) > t}.

Hence the g∗ we construct when integrating the integral on the left equals the
(g ◦ f)∗ we construct when integrating the integral on the right, and

∫
Ω

g ◦ f dµ =

∫ ∞

0

(g ◦ f)∗(t) dt =
∫ ∞

0

g∗(t) dt =

∫
R
g dµf .

So the two integrals are equal.

Remark 84. The use of pushforward measures allows us to construct new ran-
dom variables as measurable functions of existing random variables, knowing
that the integrals of functions on these new random variables using their push-
forward measures will be just as well-behaved as the originals.
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4.3 Probability Spaces

Definition 85. A probability space is a measure space (Ω,F , P ) such that
P (Ω) = 1. The measure P on a probability space is called a probability measure.

Definition 86. Let (Ω,F , P ) be a probability space (i.e., P (Ω) = 1), and
consider the measurable space (R,B). A real random variable X is a measur-
able function from Ω to R. It induces the pushforward measure PX , which by
Definition 79 satisfies PX(R) = P (Ω) = 1.

Lemma 87. Let (Ω,F , P ) be a probability space. Then we can take the integral
of f∗(t) dt from 0 to 1, rather than from 0 to infinity, since for any event in F ,
0 ≤ P (F ) ≤ 1.

Theorem 88. For a probability space (Ω,F , P ), Lebesgue integration satisfies∫
Ω

1 dP =

∫ 1

0

1∗(t) dt = µ(Ω) = 1.

Let f : Ω → R such that f(x) = 1 for all x ∈ Ω. Then we construct
f∗ : R → R such that f∗(t) is the probability that f(x) > t, or in measure
theoretic terms, the P -measure of the set such that f(x) = 1 > t. This holds for
all x ∈ Ω when t < 1. So

f∗(t) =

{
P (Ω) if 0 ≤ t < 1,

P (∅) if 1 ≤ t.

The area under f∗ is a unit square.

We can also calculate the Lebesgue integral on other important functions.

Example 89. Let f be the indicator function for some measurable set B ∈ B.
That is, let

f(x) =

{
1 if x ∈ B, and

0 otherwise.

Then f∗(t) is the measure of the set such that f(x) > t. This holds for all x ∈ B
when t < 1, but holds for no x when t ≥ 1. So

f∗(t) =

{
P (B) if 0 ≤ t < 1

P (∅) if 1 ≤ t

When we take the Lebesgue integral∫
Ω

f dP =

∫ 1

0

f∗(t) dt,

the area under f∗ is a rectangle of width 1 and height P (B).
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We use Lebesgue integrals to calculate the moments of a random variable.

Definition 90. Let (Ω,F , P ) be a probability spaceX : Ω → R be a real-valued
measurable function that induces the pushforward measure PX on the measure
space (R,B, PX). Then we can define the pth moment of X as∫

R
Xp dPX .

Example 91. If X is a continuous random variable, then the Lebesgue integral∫
R Xn dPX can be computed using Riemann integration. Since the measurable
function X is continuous, we can write dPX = PDFX(x) dx so the nth moment
of X satisfies ∫

Ω

Xn dP =

∫
R
Xn dPX =

∫ ∞

−∞
xnPDF (x) dx

4.3.1 Lp Spaces

We can use Lebesgue integration to define Lp spaces, which are spaces of func-
tions f such that the Lebesgue integral over Ω of |f |p is less than infinity.

Definition 92. Recalling Chapter 4, let (Ω,F , µ) be a measure space. Let f be
a measurable function from S to R. The Lp norm is the function ∥ · ∥p defined
by

∥f∥p =

(∫
X

|f |p dµ
)1/p

.

Remark 93. Note that the Lp norm of a random variable Y is pth root of the
pth moment of Y .

Definition 94. Let Lp(Ω, µ) be the set of measurable functions f from Ω to R
equipped with the Borel σ-algebra such that

∥f∥p =

(∫
X

|f |p dµ
)1/p

≤ ∞.

Such sets Lp are known as Lp spaces, and they are important for functional
analysis. The property of greatest interest to us is that when p ≥ 1, the Lp

norms used to define them satisfy the triangle inequality.

4.3.2 Hölder’s Inequality and Minkowski’s Inequality

Proving Hölder’s and Minkowski’s Inequalities from scratch requires proving a
handful of non-trivial integral inequalities, all named after early-20th-century
mathematicians. One would start with Jensen’s inequality, then use that to
prove Young’s inequality, which one can use to prove Hölder’s inequality, after
which Minkowski’s Inequality is relatively tame.
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To prove that our norms satisfy positive definiteness, we will use Hölder’s
inequality, and in proving that our norms satisfy the triangle inequality, we will
merely seek to satisfy the requirements of the Minkowski’s Inequality as stated.

Proposition 95. Let (Ω,F , µ) be a measure space and let f and g be real-valued
measurable functions on Ω. Then

∥fg∥1 ≤ ∥f∥q∥g∥r.

for all q, r ∈ [0,∞] such that

1

q
+

1

r
= 1.

Corollary 96. For p ≥ 2, let q = p/2 and let r = p
p−2 . Let µ = P be a

probability measure, and let f = |Y 2| for some random variable Y and g = 1.

E
[
|Y 2|

]
=

∫
Ω

|Y 2|1 dP ≤
(∫

Ω

|Y 2|p/2 dP
)2/p(∫

Ω

1r dP

)1/r

(∫
Ω

|Y 2|p/2 dP
)2/p(∫

Ω

1r dP

)1/r

= E [Y p]
2/p

.

Minkowski’s Inequality is the triangle inequality for Lp norms.

Proposition 97. If (Ω,F , µ) is a measure space, ∥ ·∥p is the Lp norm for some
1 < p < ∞, and f, g ∈ S,

∥f + g∥p ≤ ∥f∥p + ∥g∥p.

We now proceed to define our norms without using the formalisms of measure
theory, but when it comes to proving the triangle inequality, we will again resort
to the rigorous measure-theoretic definitions of this section.
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Chapter 5

Random Vector Norms

In this chapter, we use all the linear algebra and probability theory from Chap-
ters 1 and 3 to construct our norms using random vectors and prove that they
are indeed norms. We then use a special case of our norms to prove Hunter’s
Theorem, a result about complete homogeneous symmetric polynomials. We
provide plenty of examples and plots of our norms in R2 and R3. I then prove
another result that goes beyond [5], namely, that the norms are continuous with
respect to the exponent p.

5.1 Random Vector Norms

Definition 98. Let ⟨·, ·⟩ be the inner product (or dot product) of two n × 1
vectors familiar from basic linear algebra such that for x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn),

⟨x,y⟩ = y∗x = x1y1 + x2y2 + · · ·+ xnyn.

Note that for a random vector X, the dot product ⟨X,λ⟩ is the sum

⟨X,λ⟩ = X1λ1 +X2λ2 + · · ·+Xnλn,

where each λi is a real number and each Xi is a real random variable. This sum
⟨X,λ⟩ is another real random variable, and therefore, it has an expected value.
Since the product of random variables is also a random variable, |⟨X,λ⟩|p is
also a random variable, and its absolute value means it is defined on [0,∞).

Definition 99. The Gamma Function Γ is a complex extension of the factorial
function ! on the nonnegative integers. It has many interesting properties, but
in this thesis we are concerned only with its restriction to the interval [1,∞),
on which it is smooth, positive, and exactly what out might expect out of a
function satisfying the equation

Γ(n) = (n− 1)!
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for n = 1, 2, 3, · · · . On half of the complex plane with positive real component,
Γ is defined by

Γ(z) =

∫ ∞

0

tz−1e−t dt.

5.2 Main Theorem

Theorem 100. Define the function ∥ · ∥X,p : Rn → R for an i.i.d. random
vector X with Xi and p ≥ 1 by

∥λ∥X,p =

(
E|⟨X,λ⟩|p

Γ(p+ 1)

)1/p

.

Then ∥ · ∥X,p is a norm.

Remark 101. In this thesis, we are primarily concerned with cases in which p is
an even integer, since norms defined using even p can be defined using moment
generating functions. Accordingly, we will replace Γ(p + 1) with p! unless we
need to address cases involving non-integer p (see Section 5.5.1):

∥λ∥X,p =

(
E|⟨X,λ⟩|p

p!

)1/p

.

Corollary 102. Define the function H∥ · ∥X,p : Hn → R for a positive definite
random vector X with Xi i.i.d., and p ≥ 1 by

H∥A∥X,p =

(
E|⟨X,λ(A)⟩|p

Γ(p+ 1)

)1/p

Since X is i.i.d., ∥ · ∥X,p is symmetric, so by Theorem 36, H∥ · ∥X,p is a norm.

Remark 103. This remark concerns errors in our paper [5]. In Remark 3.4 of
[5], we claimed that our proof did not require the Xi to be independent, merely
that they be identically distributed (which we mistakenly wrote as “i.i.d”). Even
ignoring the typo, the claim is erroneous in its strong form. Suppose X1 is a
random variable, and X2 = X1 has the identical distribution, but is dependent.
Let λ1 = −λ2. Then E|λ1X1 +λ2X2| = E|λ1X1 −λ1X1| = 0. This violates the
property of positive definiteness.

There may be some room for the Xi to be neither totally independent nor
i.i.d., however. The function ·↓ : Rn → Rn, which sorts any vector into a non-
increasing vector with the same entries, such that λ↓ = (λi1 , λi2 , . . . , λin) with
λi1 ≥ λi2 ≥ · · · ≥ λin , is symmetric. If we define our norm as

∥ · ∥X,p =

(
E|⟨X,λ↓⟩|p

Γ(p+ 1)

)1/p

,
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then the Xi can be any random vector such that the second moment matrix
is positive definite and the triangle inequality holds, because the composition
with ·↓ guarantees that the norm is symmetric. A characterization of the random
vectors X that satisfy the triangle inequality remains an open question.

In [5]’s proof of Theorem 1b, we also misleadingly claimed that for diagonal
A,B ∈ Hn, λ(A+B) = λ(A)+λ(B). In fact, this is true only if the diagonals of
A and B have the same ordering. One can work around this by restricting to the
set of diagonal matrices with non-increasing diagonal entries, or by assuming
that the norm is symmetric and using Theorem 47.

Proving Theorem 100

To prove that ∥ · ∥X,p is a norm, we must show three things:

1. ∥λ∥X,p equals zero when λ = 0 and is otherwise positive.

2. ∥ · ∥X,p is homogeneous, so ∥cλ∥X,p = c∥λ∥X,p for any positive scalar c.

3. ∥ · ∥X,p satisfies the triangle inequality.

5.2.1 Positive Definiteness

Lemma 104. Let XXT be positive definite. The function ∥ · ∥X,p is positive
definite.

Proof. We rely on the positive definiteness of X as we have defined positive
definiteness for random vectors in 1.3. All we need to do is fit the expression
into a form that includes the positive definite matrix XXT. We manage this by
using Hölder’s inequality as shown in 96. Let Y = ⟨X,λ⟩. Then

E [|Y p|]2/p ≥ E
[
|Y 2|

]
.

We first examine the left side.

E [|Y p|]2/p =
(
E |⟨X,λ⟩p|1/p

)2
= Γ(p+ 1)2/p∥λ∥2X,p.

Since square roots and multiplication by positive scalars preserve sign,

∥λ∥X,p ≥
(
E
[
|Y 2|

])1/2
Γ(p+ 1)1/p

.

We now turn to Y 2. Since the dot product is commutative,

Y 2 = ⟨X,λ⟩2 = ⟨λ,X⟩⟨X,λ⟩ = λTXXTλ.

Since E
[
XXT

]
is positive definite, the expected value

E
[
|Y 2|

]
= E|λT

(
XXT

)
λ| > 0

if and only if λ is the zero vector. Thus, ∥λ∥X,p = 0 if and only if λ = 0.

Corollary 105. If the Xi are nonzero and i.i.d., then by 71, XXT is positive
definite, so ∥ · ∥X,p is positive definite.
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5.2.2 Homogeneity

The second property, homogeneity, is relatively straightforward.

Lemma 106. The function ∥ · ∥X,p is homogeneous. In other words, for any
scalar c,

∥cA∥X,p = |c|∥λ∥X,p.

Proof. Inner products and expected values preserve constants, and the absolute
value brackets preserve magnitude, so

E|⟨X, cλ⟩| = E|c⟨X,λ⟩| = |c|E|⟨X,λ⟩|.

All that remains for the poor constant is to pass through the exponents p and
1/p before arriving safely at the far left of the expression. Since |c| is positive,
the fractional exponent poses no challenge. Thus,

∥cA∥X,p = |c|
(
E|⟨X,λ⟩|p

p!

)1/p

= |c|∥λ∥X,p.

5.2.3 Triangle Inequality

Our Norms As Lp Norms

Let X be an i.i.d. real random vector on the probability space (Ω,F , P ), and
let Y = ⟨X,λ⟩. Since Y is the sum of constants times random variables Xi, Y
is a random variable. Our norm ∥ · ∥X,p is defined by

p
√
Γ(p+ 1)∥λ∥X,p = (E|⟨X,λ⟩|p)1/p = (E|Y |p)1/p .

Using the Lebesgue definition of a moment,

(E|Y |p)1/p =

(∫
Ω

|Y |n dP
)1/p

.

This is the Lp norm of Y , so it satisfies Minkowski’s inequality. Replacing Y
with |⟨X,λ⟩|, we obtain (∫

|⟨X,λ⟩|p dP
)1/p

.

Lemma 107. Let λ1,λ2 ∈ Rn. Then

∥λ1 + λ2∥X,p ≤ ∥λ1∥X,p + ∥λ2∥X,p.
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Proof. We take the norm of λ1 + λ2

p
√
Γ(p+ 1)∥λ1 + λ2∥X,p =

(∫
|⟨X,λ1 + λ2⟩|p dP

)1/p

.

We distribute the inner product,(∫
|⟨X,λ1 + λ2)⟩|p dP

)1/p

=

(∫
|⟨X,λ1⟩+ ⟨X,λ2⟩|p dP

)1/p

.

Applying Minkowski’s Inequality, the previous expression is

≤
(∫

|⟨X,λ1⟩|p dP
)1/p

+

(∫
|⟨X,λ2⟩|p dP

)1/p

.

Thus,

p
√
Γ(p+ 1)∥λ1 + λ2∥X,p ≤ p

√
Γ(p+ 1)∥λ1∥X,p +

p
√

Γ(p+ 1)∥λ2∥X,p.

Cancelling the constant p
√
Γ(p+ 1), we conclude that

∥λ1 + λ2∥X,p ≤ ∥λ1∥X,p + ∥λ2∥X,p

for all λ1,λ2 ∈ Rn.

Proof of Theorem 100

Since the function ∥ · ∥X,p : Rn → R satisfies the conditions of positive defi-
niteness (Lemma 104), homogeneity (Lemma 106), and the triangle inequality
(Theorem 107), ∥ · ∥X,p is a norm on Rn. ■

5.3 Moments

Theorem 108. Let X = (X1, X2, . . . , Xn) be the random vector in Rn such
that the Xi are i.i.d. random variables with moments µi for i ∈ N. Let M be
the moment generating function of all the Xi. Then

∥λ∥pX,p =
E|⟨X,λ⟩|p

n!
= [tp]Mλ (t) ,

where

Mλ (t) =

n∏
i=1

M(λit) ,

and [tp]Mλ (t) refers to the coefficient of the pth term in the Taylor expansion
of Mλ.
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Proof. The moment generating function of Xiλi is

MXiλi(t) = E
[
etXiλi

]
= MXi(λit)

By Proposition 66, the moment generating function of the sum of independent
random random variablesXi is the product of each moment generating function.
Let Y = X1λ1 +X2λ2 + · · ·+Xnλn. Then

MY(t) =

n∏
i=1

MXiλi
(t) =

n∏
i=1

MXi
(tλi)

Theorem 109. Let X be i.i.d. and let µk be the kth moment of the Xi. Then

∥λ∥X,p =
∑
|π|=p

(
p

π

) n∏
i=1

µπi
λπi
i . (5.1)

Proof. We first examine the expression whose expected value is the pth moment.

⟨X,λ⟩p = (X1λ1 +X2λ2 + · · ·+Xnλn)
p

We can represent this pth power of a polynomial using multiindices.∑
|π|=p

(
p

π

)
(Xλ)

π

where π = π1, π2, . . . , πn with non-negative integer πi,
(·
·
)
gives multinomial

coefficients, defined as(
p

π

)
=

(
p

π1, π2, · · · , πn

)
=

p!

π1!π2! . . . πn!
,

and

(Xλ)
π
= (X1λ1)

π1 (X2λ2)
π2 · · · (Xnλn)

πn .

Because the Xi are independent, the expected value operator can be distributed
to each power of Xi.

E

∣∣∣∣∣∣
∑
|π|=p

(
p

π

)
(Xλ)

π

∣∣∣∣∣∣ =
∑
|π|=p

(
p

π

)
E |(X1λ1)

π1 |E |(X2λ2)
π2 | . . .E |(Xnλn)

πn |

Since λi are constant and E|Xk
i | = µk, the above expression equals

∑
|π|=p

(
p

π

) n∏
i=1

µπi
λπi
i ,

which is our desired expression.
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5.4 Hunter’s Theorem

Definition 110. Let x = (x1, x2, . . . , xn) ∈ Rn. The complete homogeneous
symmetric (CHS) polynomial of degree k for n variables is the sum of all possible
monomials of degree k with coefficient 1. In other words,

hk(x) =
∑

1≤i1≤i2≤...ik≤n

k∏
j=1

xij .

Example 111. Let x = (x1, x2, x3) ∈ R3. The polynomial h1 in three variables
is defined by

h1(x) = x1 + x2 + x3.

The polynomial h2 in three variables gives

h2(x) = x2
1 + x1x2 + x1x3 + x2

2 + x2x3 + x2
3.

The polynomial h3 in three variables gives

h3(x) = x3
1 + x2

1x2 + x2
1x3 + x1x

2
2 + x1x2x3 + x1x

2
3 + x3

2 + x2
2x3 + x2x

3
3 + x3

3.

Theorem 112. Complete homogeneous symmetric polynomials are positive def-
inite.

Proof. Let λ ∈ Rn and A = diag(λ). Let X = (X1, X2, . . . , Xn) such that the
Xi are i.i.d. exponential random variables with parameter 1 (see Example 55),
and let M be the moment generating function for all the Xi. From Example 65,
M generates the moments

µn =
n!

1n
= n!.

By Theorem 108, ∥λ∥pX,p is the pth term in the MGF Mλ (t) =
∏n

i=1 M(λit).
From 5.1, the pth term in Mλ is the sum

∑
|π|=p

(
p

π

) n∏
i=1

µπiλ
πi
i =

∑
|π|=p

p!

πi!

n∏
i=1

πi!λ
πi
i = p!

∑
|π|=p

λπi
i = p!hp(λ). (5.2)

Our norm ∥λ∥X,p is the pth root of the pth moment of |⟨X,λ⟩| divided by p!.
By 5.2,

∥λ∥X,p = (hp(λ))
1/p

.

Since ∥λ∥X,p is a norm, it is positive definite. Thus, ∥λ∥pX,p = hp(λ) is positive
definite.
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5.5 Examples

Since a norm is uniquely defined by its unit ball (Proposition 10), we can get a
good picture of our norms by plotting the unit balls in two and three dimensions.

Example 113. For any even p, norms on Rn induced by normal distributions
with mean 0 and variance σ2 (Figures 5.1) reproduce multiples of the Euclidean
norm. When the mean is non-zero, the result is elliptical, but changing p does
not affect the shape. This remarkable good behavior can be explained by the
fact that the sum of normally distributed random variables centered at zero
Z = ⟨X,λ⟩ is normally distributed and centered at zero with variance σ2

Z =∑n
i=1 λiσ

2. For even p, the pth moment of Z, which is p!∥λ∥pX,p, is σ
p
Z(p− 1)!!,

where k!! is the product of all natural numbers less than or equal to k with the
same parity as k (See Section 5-4 in [11]). Our norm is thus(

p!!
(∑n

i=1 λiσ
2
)p/2

p!

)1/p

=

(
p− 1!!

p!

)1/p
(
σ2

n∑
i=1

λi

)1/2

=
σ∥λ∥
(p!!)1/p

.

Example 114. The exponential distribution with parameter λ = 1 (Figure
5.3) produces norms whose unit circles have interesting shapes. The 1-norm
on R2 resembles a racetrack. When λ1 and λ2 have the same sign, ∥λ∥X,1 =
|λ1| + |λ2| = λ1 + λ2, which is linear, but when they have different signs, the
unit circle is semicircular. The unit circles of ∥λ∥X,p for p = 2, 3, 4 are football-
shaped, and as p increases, they come to resemble the square that is the unit
circle of ∥ · ∥∞ (See Figure 1.2).

5.5.1 Odd and non-integer p

The proof that our norms satisfy the triangle inequality relies on Minkowski’s
inequality, which does not require p to be an even integer. Because we take the
expected value of the absolute value of ⟨X,λ⟩p, our norms are well-defined for
all p ≥ 1, not just even integers. In fact, we can do better.

Theorem 115. Let X have at least m moments. The function f : [1,m] → R
defined by f(p) = ∥λ∥X,p is continuous for all ∥λ∥ ∈ Rn.

Proof. Let PY be the pushforward measure of the random variable Y = ⟨X,λ⟩.
Then

Γ(p+ 1)(f(p))p = E|⟨X,λ⟩|p =

∫
|⟨X,λ⟩|p dP =

∫
|x|p dPY .

For all x ∈ R and 1 ≤ p ≤ m, |x|p ≤ |x|+ |x|m, so∫
|x|p dPY ≤

∫
|x|+ |x|m dPY =

∫
|x| dPY +

∫
|x|m dPY .
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Figure 5.1: Unit circles for ∥ · ∥X,1, ∥ · ∥X,2, ∥ · ∥X,4, and ∥ · ∥X,20, where the Xi

are normal with µ = 0 and σ = 1
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Figure 5.2: Normal unit circles with p = 10 and mean −2,−1, 0, 1, and 6. The
curve is the same for µ = −1 and µ = 1.
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Figure 5.3: Unit circles for ∥ · ∥X,1, ∥ · ∥X,2, ∥ · ∥X,3, ∥ · ∥X,4, and ∥ · ∥X,20, where
the Xi are exponential with parameter λ = 1
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These are the 1 and m norms, so∫
|x|p dPY ≤

∫
|x| dPY +

∫
|x|m dPY = ∥λ∥X,1 + Γ(m+ 1)∥λ∥mX,m.

Thus, we can bound f(p). Because the interval of possible integral values[
∥λ∥X,1, ∥λ∥X,1 + Γ(m+ 1)∥λ∥mX,m

]
is compact, for any p ∈ [1,m] and sequence p1, p2, . . . that converges to p, the
integrals

∫
|x|pi dPY converge to

∫
|x|p dPY . So Γ(p+ 1)fp is continuous. Since

Γ(p+1) is a positive continuous function for positive p and p is bounded between
1 and m, f is continuous.

This continuity is clear in Figure 5.3, where each p norm appears squeezed
between the p − 1 and p + 1 norms. Coming up with polynomials to describe
norms with odd p is difficult since the moment-generating function we use for
even p does not work. When p is not an integer, it quickly becomes necessary
to use a computer.

5.5.2 Three Dimensions

By using 3D modeling, we can plot the unit balls of our norms in three variables.

Example 116. Bernoulli random variables produce interesting norms (see Fig-
ures 5.4, 5.5, 5.6, and 5.7).
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Figure 5.4: Unit circles for ∥ · ∥X,2, ∥ · ∥X,4, and ∥ · ∥X,20, where the Xi are
Bernoulli with parameter 1/2. For parameter 1/2, Bernoulli random variables
produce norms in two variables whose unit circles, as the norm’s exponent p
increases, approach a hexagon resembling a multiple of ∥ · ∥1 when λ1 and λ2

have the same sign, and ∥ · ∥∞ when they do not.
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Figure 5.5: Unit circles for ∥ · ∥X,2, where the Xi are Bernoulli with varying
parameter. As the parameter increases, the unit circle grows narrower, since
the most likely outcome is that X1 and X2 are both 1, in which case |⟨X,λ⟩| =
|λ1+λ2|, which is not a norm: the equation |λ1+λ2| = 1 produces two parallel
lines, not a closed curve.
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Figure 5.6: Unit circles for ∥ · ∥X,10, where the Xi are Bernoulli with varying
parameter. Since we are taking the norms with p = 10, we see roughly hexagonal
curves. Again, the top left and top right corners of Bernoulli unit circles with
parameter P come very close to those of parameter 1− P .
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Figure 5.7: Squarish pillow-like unit balls produced using ∥(x, y, z)∥X,2 = 1
(above) and ∥(x, y, z)∥X,4 = 1 (below) with Bernoulli parameter 1/2.
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Chapter 6

Pareto Distribution

The Pareto distribution, named after the Italian economist Vilfredo Pareto, is
a power law distribution used in a variety of sciences to describe continuously
the inverse relationship between rank and frequency. Pareto initially used it
to describe the distribution of wealth in a society: as the amount of wealth
increases, the probability that a randomly selected citizen has that amount of
wealth decreases according to a roughly Pareto power law.

Pareto distributions, and the related, discrete Zipf distributions, which con-
verge to the inverses of Pareto distributions, have been used to describe the
distribution of sizes among grains of sand [13], population of settlements [12],
and the frequency of words in linguistic corpora [16], as well as a host of other
phenomena.

Pareto distributions have two parameters, xm and α. Their probability
density functions (PDFs) are given by

PDF (x) =
αxα

m

xα+1
,

with support on [xm,∞).
When doing statistics, the parameter xm is used to scale the x-axis and to

mark the cutoff point for the object of study. For example, in examining the
frequency of settlements by population, we could put the cutoff point for what
we consider a settlement at xm = 10,000 inhabitants. If the distribution is
Pareto, then there will be many small towns with population just above 10,000,
fewer towns with population of about 100,000, still fewer cities with population
of about one million, and only a handful of metropolises.

More interesting, perhaps, than the often arbitrary lower cutoff xm is the
sharpness of the power law by which the frequency of cities with population x
decreases as x increases. For example, in historically fragmented regions such as
Europe, there are many small and medium-sized cities, with relatively few large
metropolises. In Pareto terms, α is high. In contrast, regions such as California,
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Figure 6.1: Pareto PDFs for varying α with xm = 1

where the population is highly concentrated in Los Angeles, the Bay Area, and
San Diego, the right tail is fatter, so α is lower.

The power laws of the Pareto distribution are also relevant to the study of
fractals. In [10], the parameter 1

α can be considered a measure of fractional
dimension for sets whose sizes using different metrics distribute according to
Pareto power laws.

6.1 Moments

The motivation for using the Pareto Distribution in relation to our random
matrix norms is that not all moments exist for each α.

Pareto random variables have only as many finite moments as there are
natural numbers n < α. Accordingly, Pareto distributions never admit analytic
moment generating functions, but the moments that do exist can be solved using
the PDF and the usual integral for moments:

µn =

∫ ∞

1

xn α

xα+1
dx = α

∫ ∞

1

xn−α−1 dx =
α

n− α
xn−α

∣∣∞
1

=
α

α− n

6.2 Pareto Random Vector Norms

Fortunately, our norm ∥λ∥X,p requires only the first p moments of the Xi, but
does not require them to admit moment generating functions. As long as α > p,
then, our norm exists.
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Let X = (X1, X2, . . . , Xn), in which the Xi are independent Pareto random
variables with parameters α and xm = 1. That is, let each Xi have the CDF

CDFX (x) =

{
1− 1

xα ifx ≥ xm,

0 ifx < xm.

The pth moment of ⟨X,λ⟩ is

E |⟨X,λ⟩p| = p!∥λ∥pX,p.

Let p < α be even and let Xi be Pareto with parameters α and xm = 1.
Since the pth moment of each Xi exists, Theorem 100 ensures that pth moment
of ⟨X,λ⟩ exists and Section 5.3 gives the formula in terms of the pth and smaller
moments of Xi:

E |⟨X,λ⟩p| =
∑
|π|=p

(
p

π

)
µπi

λπi
i =

∑
|π|=p

(
p

π

)
αλπi

i

α− πi
. (6.1)

Example 117. For n = 2,

∥λ∥2X,2 =
1

2
α

(
λ2
1

α− 2
+

2αλ1λ2

(α− 1)2
+

λ2
2

α− 2

)
.

The norm where p = 4 is also an elegant polynomial.

∥λ∥4X,4 =
1

24
α

(
λ4
1

α− 4
+

4αλ3
1λ2

α2 − 4α+ 3
+

6αλ2
2λ

2
1

(α− 2)2
+

4αλ1λ
3
2

α2 − 4α+ 3
+

λ4
2

α− 4

)
.

6.3 Limits

Sending α to its limits yields interesting results.

6.3.1 High α

As α approaches infinity, the Pareto distribution bunches up toward a single
mass at 1. When the Xi resemble a constant of 1, |⟨X,λ⟩| resembles |⟨1,λ⟩| =
|
∑n

i=1 λi|, where 1 is the all-ones vector. Interestingly, though we can approach
it with norms, the function |

∑n
i=1 λi|, which corresponds to |

∑n
i=1 λi(A)| =

| trA| in the Hermitian case, is not itself a norm because it is not positive
definite. For example, the matrix

A =

[
1 0
0 −1

]
has trace of 1 + (−1) = 0, but it is not the zero matrix.
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Figure 6.2: Unit circles of Pareto norms with p = 2 and varying α.
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Figure 6.3: Unit circles of Pareto norms with α = 5 and varying p.
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In Figures 6.2 and 6.3, we see that the unit circles produced by the norms
get longer and narrower as the difference between α and p grows. In R2, the
limit of the unit circle as alpha approaches infinity is the curve |λ1 + λ2| = 1,
which is represented by two parallel lines at y = 1− x and y = −1− x.

The presence in the examples of binomial coefficients gives a hint, and indeed,
the proof is straightforward.

Proposition 118. Let Xα be i.i.d. and let the Xi be Pareto random variables
with parameter α. Then

lim
α→p+

p
√

p!∥λ∥Xα,p = |
n∑

i=1

λi|.

Proof. By 6.1

lim
α→p+

p
√
p!∥λ∥Xα,p = lim

α→p+

∑
|π|=p

(
p

π

)
αλπi

i

α− πi

1/p

.

As α approaches infinity, all moments µk = α
α−k approach 1, leaving

lim
α→p+

∑
|π|=p

(
p

π

)
αλπi

i

α− πi

1/p

=

∑
|π|=p

(
p

π

)
λπi
i

1/p

.

By the multinomial theorem,

=

(
|

n∑
i=1

λi|p
)1/p

= |
n∑

i=1

λi|.

Thus as α approaches p from above, the norm approaches the absolute value of
the sum of the λi, which is, again, not a norm.

6.3.2 Low α

As α approaches p from above, the terms of∑
|π|=p

(
p

π

)
αλπi

i

α− πi

in which one of the πi is p, and the others are zero, approach infinity, while the
other terms remain small. The pth moment thus approaches

n∑
i=1

(
p

p

)
pλp

i

α− p
=

n∑
i=1

pλp
i

α− p
.
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As α approaches p for even p, ∥λ∥Xα,p approaches∣∣∣∣∣∣
∑n

i=1
pλp

i

α−p

p!

∣∣∣∣∣∣
1
p

=
|
∑n

i=1 λ
p
i |

1
p

(α− p) (p− 1)!
1
p

= ∥λ∥p ((α− p)(p− 1)!)
− 1

p ,

where ∥λ∥p is the p-norm as shown in 1.2.
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